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Abstract
Session-based recommendation aims to predict the next item that
anonymous users may be interested in, based on their current ses-
sion interactions. Recent studies have demonstrated that retrieving
neighbor sessions to augment the current session can effectively
alleviate the data sparsity issue and improve recommendation per-
formance. However, existing methods typically rely on explicitly
observed session data, neglecting latent neighbors - not directly
observed but potentially relevant within the interest space - thereby
failing to fully exploit the potential of neighbor sessions in recom-
mendation.

To address the above limitation, we propose a novel model of
diffusion-based latent neighbor generation for session-based rec-
ommendation, named DiffSBR. Specifically, DiffSBR leverages two
diffusion modules, including retrieval-augmented diffusion and
self-augmented diffusion, to generate high-quality latent neigh-
bors. In the retrieval-augmented diffusion module, we leverage
retrieved neighbors as guiding signals to constrain and reconstruct
the distribution of latent neighbors. Meanwhile, we adopt a training
strategy that enables the retriever to learn from the feedback pro-
vided by the generator. In the self-augmented diffusion module, we
explicitly guide the generation of latent neighbors by injecting the
current session’s multi-modal signals through contrastive learning.
After obtaining the generated latent neighbors, we utilize them to
enhance session representations for improving session-based rec-
ommendation. Extensive experiments on four public datasets show
that DiffSBR generates effective latent neighbors and improves
recommendation performance against state-of-the-art baselines.

CCS Concepts
• Information systems→ Recommender systems.

∗Corresponding author.

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.
KDD ’26, Jeju Island, Republic of Korea
© 2026 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Keywords
Session-based Recommendation, Diffusion Model, Multi-modal
ACM Reference Format:
Yuhan Yang, Jie Zou, Guojia An, Jiwei Wei, Yang Yang, and Heng Tao
Shen. 2026. Unleashing the Potential of Neighbors: Diffusion-based Latent
Neighbor Generation for Session-based Recommendation. In Proceedings of
the 32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining
V.1 (KDD ’26), August 09–13, 2026, Jeju Island, Republic of Korea. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Given the exponential growth of multimedia content, users face
increasing challenges in finding information that aligns with their
preferences [35, 55]. Fortunately, the emergence of recommender
systems [2, 3, 38, 39, 56] has alleviated this issue. However, due
to growing concerns over user privacy, it is often infeasible to
access users’ personal information and historical interactions. To
address this issue, session-based recommendation (SBR) [4, 22, 43]
has emerged as a promising solution. SBR aims to recommend the
next item based solely on the interaction of anonymous users within
a session.

In SBR, the lack of user profiles, coupled with short session
lengths, intensifies data sparsity, thereby degrading overall rec-
ommendation performance. To alleviate this issue, recent studies
primarily adopt retrieval-based neighbor methods [29, 51] to mine
neighbor information and enhance the target session representation.
These methods can be broadly categorized into similarity-based
and co-occurrence-based approaches. The former (e.g., ICM-SR
[25], DIDN [49], TASI-GNN [27], ECCL [1]) select semantically
similar sessions via static similarity learning, while the latter (e.g.,
FGNN [30], MSGAT [29], DGNN [19], DIMO [51]) leverage item
co-occurrence patterns to capture structural relationships.

Although these existing neighbor retrieval methods have made
notable progress in the field of SBR, they still face inherent limita-
tions. These methods are constrained by the scope of the dataset
and only retrieve existing observable neighbors, which refer to
interest-aligned sessions explicitly contained in the dataset. However,
this paradigm overlooks latent neighbors, which are not recorded
in the dataset and therefore cannot be discovered through retrieval
methods but are still aligned with the user’s underlying interests,
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Figure 1: Retrieval-based method vs. generative method. The
blue region represents the distribution of the dataset, while
the green region denotes the full interest space of the cur-
rent session. Retrieval-basedmethod can only access interest-
aligned neighbors within the intersection of these regions,
thus being constrained by observed data. In contrast, the gen-
erative method overcomes this limitation by exploring the
entire interest space, enabling the generation of potentially
relevant but unobserved latent neighbors.

thereby limiting the expressiveness of neighbors and ultimately
constraining recommendations. Specifically, as shown in Figure
1, we first project the user’s current session representation into a
unified interest space. Under the retrieval paradigm, observable
neighbors are obtained from samples that exist in the dataset (blue
region in Figure 1). While such retrieved neighbors may offer partial
coverage of the user’s interest space, they are fundamentally con-
strained by the boundaries of the dataset, thereby failing to access
the full extent of the user’s interest space. In contrast, the gener-
ative paradigm models the potential distribution of user interests
and expands the scope of neighbors (within the green region but
outside the green–blue overlap in Figure 1). This approach enables
active exploration of interest regions beyond the observed data,
allowing the generation of latent neighbors that are inaccessible
through traditional retrieval methods.

To overcome the inherent limitations of the aforementioned re-
trieval paradigm, we take an initial step toward transitioning from
a retrieval-based framework to a generative paradigm, aiming to
generate latent neighbors beyond the scope of observable neigh-
bors. Inspired by the remarkable advances of diffusion models in
modeling complex data distributions [6, 45], we adopt diffusion as
the main generative mechanism in our framework. Despite their
promising generative capabilities, diffusion models still face two
key challenges in ensuring the quality and effectiveness of the gen-
erated latent neighbors: (1) How to effectively design guidance
mechanisms to improve the quality of latent neighbors generated
by diffusion models. (2) How to effectively integrate multi-modal
information to enhance latent neighbors generation in the diffusion
generation process.

To address the aforementioned two challenges, we propose a
novel model of Diffusion-based latent neighbor generation for
Session-based Recommendation, called DiffSBR, which guides the
diffusion model to generate high-quality latent neighbors. Specif-
ically, to tackle the first challenge, we proposed a novel module
called Retrieval-augmented Diffusion Module, which controls

generation by incorporating the retrieved prior neighbor informa-
tion during the diffusion generation process, so that latent neigh-
bors can be generated in a targeted manner. Moreover, a training
strategy is introduced in this module to reversedly optimize the
neighbor retriever using the loss signal from the neighbor generator,
establishing a closed-loop collaboration between retrieval and gen-
eration. To address the second challenge above, we design a Self-
augmented Diffusion Module, which integrates multi-modal
information into the process of latent neighbor generation. Specif-
ically, we use multi-modal information to guide generation and
then conduct contrastive learning against the retrieval-augmented
diffusion outputs to better integrate multi-modal semantics.

In this paper, our main contributions are summarized as follows:

• We perform a pioneering attempt to generate latent neigh-
bors and highlight their importance, aiming to mitigate the
inherent limitations of traditional retrieval-based methods
in SBR.

• We propose a novel DiffSBR model, an effective framework
that generates effective latent neighbors through a retrieval-
augmented diffusion module and a self-augmented diffusion
module, thereby improving recommendation performance.

• We conduct extensive experiments on four public datasets,
demonstrating that our proposed DiffSBR model, not only
significantly outperforms existing SBR methods, but also
proves the effectiveness and necessity of generating latent
neighbors.

2 Related Work
2.1 Session-based Recommendation
SBR models user preferences from short-term anonymous interac-
tions. Early methods like FPMC [46] combine Markov chains with
matrix factorization but fail to capture high-order dependencies.
GRU4Rec [11] and NARM [17] improve sequential modeling via
RNNs and attention. Recent GNN-based models (e.g., SR-GNN [40],
TAGNN [47]) treat sessions as graphs to better capture complex
item relations. However, they rely solely on intra-session infor-
mation, ignoring valuable signals from neighboring sessions. To
mitigate this, some methods retrieve neighbor sessions to enrich
current session representations.

Retrieval-based neighbor methods in SBR. These methods
aim to integrate cross-session neighbor information to enhance
session representations under sparse interactions. Existing studies
can be broadly categorized into two main types. The first focuses on
similarity-based retrieval methods [1, 29], which identify relevant
neighbor sessions by computing the similarity. For example, ICM-
SR [25] employs an intention-guided neighbor detector to locate
relevant sessions, while DIDN [49] utilizes a dynamic intention-
aware module to retrieve semantically similar sessions. The second
line of work leverages co-occurrence relationships [37, 51], con-
structing global graphs based on item co-occurrence to capture
pairwise transitions across sessions. For instance, CGL [54] builds
a global graph to model inter-session correlations to enhance item
representations. MSGAT [29] further constructs a session-level rela-
tion graph and incorporates an intent-aware collaboration module
to refine the session representation.
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Although the aforementioned retrieval-basedmethods can achieve
effectiveness, they only retrieve observable neighbors from the
dataset, which consequently limits the quality of the neighbors.
In contrast, we exploit the generative capability of diffusion mod-
els to generate latent neighbors, thereby uncovering semantically
relevant neighbors that are not explicitly present in the data.

Multi-modal-based methods in SBR. Since user interests are
often driven by multi-modal content, relying solely on ID features
is insufficient to reflect true preferences. Recent works leverage rich
item features to improve user intentmodeling. For example, CoHHN
[52] incorporates price as a key modality; MMSBR [50] combines
item text and images; LLM4SBR [28] utilizes textual descriptions
and prompts large language models for intent inference; and DIMO
[51] decouples and fuses ID and multi-modal features. Distinct from
these approaches, our method is the first to explicitly integrate
multi-modal signals into the neighbor generation process in SBR,
to the best of our knowledge.

2.2 Diffusion Models in Recommendation
Diffusion models have recently emerged as a promising generative
framework for recommendation, offering strong capacity for un-
certainty modeling and flexible preference generation. Early work
like DiffRec [34] applies diffusion to user preference modeling and
item generation. DiffuRec [18] and DiQDiff [24] extend this idea to
sequential recommendation via reverse diffusion. Further, DCASR
[10] and DiffuASR [20] explore diffusion-based augmentation for
improving sequence representation. Beyond sequences, DiffKG [15]
and DiffMM [14] introduce diffusion into structured data, including
knowledge graphs and multimodal interaction graphs. Recently,
DDRM [53] and MCDRec [23], employ conditional diffusion to in-
tegrate user preferences into the generation process, enhancing
personalization and semantic alignment. Although prior efforts
have validated the effectiveness of diffusion models, most methods
focus on target item generation or sequence augmentation. Instead,
in this paper, we take the first step to generate latent neighbor infor-
mation in SBR, which remains largely underexplored by previous
work.

3 Problem Formulation
LetV = {𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑛} denote the set of all items in the dataset,
where 𝑛 is the total number of unique items. Each item 𝑣𝑖 ∈ V
consists of an identifier 𝑣𝑖𝑑𝑖 and multi-modal content features 𝑣𝑚𝑜

𝑖 ,
i.e., 𝑣𝑖 =

{
𝑣𝑖𝑑𝑖 , 𝑣𝑚𝑜

𝑖

}
. In this work, the multi-modal content features

𝑣𝑚𝑜
𝑖 include textual and visual modalities: 𝑣𝑚𝑜

𝑖 =

{
𝑣𝑡𝑥𝑡𝑖 , 𝑣

𝑖𝑚𝑔

𝑖

}
, where

𝑣𝑡𝑥𝑡𝑖 =
{
𝑤1,𝑤2, . . . ,𝑤𝑞

}
denotes a sequence of 𝑞 words describing

the item’s title and brand name, and 𝑣𝑖𝑚𝑔

𝑖
represents the correspond-

ing image of item 𝑣𝑖 . Let S =
{
𝑠1, . . . , 𝑠 𝑗 , . . . , 𝑠 |S |

}
denote the set of

all sessions, where |S| is the total number of sessions. Each session
𝑠 𝑗 is an ordered sequence from an anonymous user within a short
time period, formally defined as: 𝑆 𝑗 = [𝑣1, 𝑣2, . . . , 𝑣𝑚], where𝑚 is
the length of the current session. Given the current session history
[𝑣1, 𝑣2, . . . , 𝑣𝑚], the objective of SBR is to predict the next item 𝑣𝑚+1
that the user is most likely to interact with.

4 Methodology
In this section, we provide a detailed description of our proposed
DiffSBR framework, as illustrated in Figure 2. Each input session
is first encoded via an ID and a multi-modal session representa-
tion module, resulting in a session ID embedding and a session
modality embedding. These representations are then fed into the
retrieval-augmented diffusion module and the self-augmented dif-
fusion module to generate latent neighbors, thereby enhancing the
current session for the final recommendation task.

4.1 ID and Multi-modal Session Representation
Here, we aim to obtain the session ID embedding and session modal-
ity embedding for each session separately through three main steps.

4.1.1 Initialization of Item Embeddings. Given the differences in
the presentation of various modalities, we adopt specific encod-
ing methods to convert raw modality data into vector representa-
tions. For each item 𝑣𝑖 , we construct three types of embeddings:
a structured ID embedding, a semantic embedding from textual
descriptions, and a visual embedding derived from item images.

For structured ID embedding 𝑣𝑖𝑑𝑖 of each item 𝑣𝑖 , we follow com-
mon practices in prior work (e.g., [17, 40]) to construct an ID embed-
ding table E𝑖𝑑 ∈ R𝑛×𝑑 , where each row corresponds to a randomly
initialized ID embedding e𝑖𝑑𝑖 ∈ R𝑑 of a specific item.

There exists a substantial semantic gap between textual and vi-
sual modalities. Similar to Zhang et al. [51], we address this issue
by transforming the visual modality into a textual form, thereby
aligning heterogeneous modalities into a shared semantic space.
Specifically, we employ GoogLeNet [31] to predict the top-2 cat-
egory labels for each image of items, which are concatenated to
form a pseudo-textual representation 𝑣𝑐𝑡𝑥𝑡𝑖 = {𝑤 ′

1,𝑤
′
2, . . . ,𝑤

′
𝑜 }. This

is further concatenated with the original item description 𝑣𝑡𝑥𝑡𝑖 =

{𝑤1,𝑤2, . . . ,𝑤𝑞} to construct a unified multi-modal input 𝑣𝑚𝑜
𝑖 =

{𝑤1, . . . ,𝑤𝑞,𝑤
′
1, . . . ,𝑤

′
𝑜 }. We feed 𝑣𝑚𝑜

𝑖 into a pre-trained BERT [5]
model to obtain contextualized token embeddings {e1, e2, . . . , e𝑙+𝑜 },
and apply average pooling to initialize the multi-modal item repre-
sentation e𝑚𝑜

𝑖 ∈ R𝑑 , computed as:

e𝑚𝑜
𝑖 =

1
𝑞 + 𝑜

𝑞+𝑜∑︁
𝑟=1

e𝑟 . (1)

4.1.2 Graph-enhanced Item Embeddings. After obtaining the ini-
tialized item embeddings, we incorporate graph structure to further
model transition dependencies and collaborative relationships. Fol-
lowing prior work [42, 51], we construct a directed item graph
G = (V, E) based on co-occurrence patterns, where each node
represents an item and the edge weight between two items reflects
their co-occurrence frequency. From this graph, we obtain the cor-
responding adjacency matrix A ∈ R𝑛×𝑛 , where A(𝑖, 𝑗) denotes the
edge weight from item 𝑣𝑖 to item 𝑣 𝑗 . We also construct the degree
matrix D ∈ R𝑛×𝑛 , where D(𝑖, 𝑖) is the out-degree of item 𝑣𝑖 , defined
as the sum of its outgoing edge weights.

We then apply an 𝐿-layer Graph Convolutional Network (GCN)
to perform message aggregation. For both ID and multi-modal
embeddings (denoted as e𝑖𝑑𝑖 and e𝑚𝑜

𝑖 ), the 𝑙-th layer update is defined
as:

x(𝑙 )
𝑣𝑐
𝑖

= Norm
(
D−1Ax(𝑙−1)

𝑣𝑐
𝑖

W(𝑙−1)
)
, (2)
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Figure 2: The overall framework of DiffSBR. The left part is the overall framework, and the right part represents the two main
components of our diffusion module: (1) the retrieval-augmented diffusion module, which generates latent neighbors guided
by retrieved priors; (2) the self-augmented diffusion module, which leverages the session’s own multi-modal information to
improve the quality of latent neighbors.

where 𝑐 ∈ {𝑖𝑑,𝑚𝑜}, x(𝑙 )
𝑣𝑐
𝑖

denotes the item embedding at the 𝑙-th

GCN layer, andW(𝑙−1) ∈ R𝑑×𝑑 is a learnable transformation matrix.
Norm(·) represents a normalization function. The input to the GCN
is the initialized item embedding: x0

𝑣𝑖𝑑
𝑖

= e𝑖𝑑𝑖 , x0
𝑣𝑚𝑜
𝑖

= e𝑚𝑜
𝑖 . Finally,

we aggregate the representations across all GCN layers to obtain
the final graph-enhanced item embedding x𝑣𝑐

𝑖
:

x𝑣𝑐
𝑖
=

1
𝐿 + 1

𝐿∑︁
𝑙=0

x(𝑙 )
𝑣𝑐
𝑖

. (3)

4.1.3 Session Representation. To further obtain session-level rep-
resentation, we first employ a contrastive alignment to encourage
consistency between id and mo embeddings, which stabilizes multi-
modal training, then we compute relevance scores over all items in
the sequence, referring to Wu et al. [40]. To account for the varying
importance of item embeddings, we introduce an attention-based
aggregation [7] that adaptively weighs each item. The attention
weights 𝛼𝑖 are computed as:

𝛼𝑖 = 𝜎

(
W1x𝑣𝑐𝑚 +W2x𝑣𝑐

𝑖

)
, (4)

where W1 and W2 are learnable parameters, x𝑣𝑐𝑚 is the last-clicked
item in the sequence, and 𝜎 (·) denotes the sigmoid activation func-
tion. Then, the final session representation s𝑐 is obtained by aggre-
gating item embeddings with the learned attention weights:

s𝑐 =
𝑚∑︁
𝑖=1

𝛼𝑖 · x𝑣𝑐
𝑖
, (5)

where s𝑐 ∈ {s𝑖𝑑 , s𝑚𝑜 }.

4.2 Retrieval-augmented Diffusion Module
In this work, we adopt diffusion models as our generative backbone
due to their superior training stability and high-quality sample
generation compared to Generative Adversarial Networks (GANs)
[8] and Variational Autoencoders (VAEs) [26], as demonstrated in
prior studies [18, 24, 45]. Moreover, diffusion models have shown
promising performance in recommendation tasks, making them a
suitable choice for our generative framework.

To ensure that the diffusion model explores the interest space in
a goal-directed manner, and to prevent it from drifting into seman-
tically irrelevant or user-unrelated regions, we design a retrieval-
augmented diffusion module. This module leverages retrieved prior
knowledge to guide the diffusion process, enabling the generation
of results that are not only semantically coherent but also highly
aligned with the user’s current preferences.

4.2.1 Retrieval-based Prior Construction. To construct a neighbor
set that provides prior guidance for the diffusion process, we first
introduce a learnable retriever to select the top-𝑘 most relevant
neighbors to the current session from the historical session database.
Specifically, given a session s𝑖𝑑 , we compute its similarity score
using the following equation:

sim𝐷 = Fscore

( [
s𝑖𝑑 ∥s𝐷

] )
, (6)

where Fscore denotes a multi-layer perceptron, and [·| |·] represents
vector concatenation. Then we select the top-𝑘 candidate sessions
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N𝑘 with the highest similarity scores. Next, we apply the softmax
function to normalize the similarity scores, in order to obtain the
attention weight for each neighbor:

𝜔 𝑗 =

exp
(
sim𝐷

𝑗

)
∑𝑘

𝑟=1 exp
(
sim𝐷

𝑟

) , (7)

where 𝑗 ∈ {1, ..., 𝑘}. The neighbor session N𝑘 , together with their
corresponding score weights, is used as conditional information to
guide the diffusion model in the downstream process.

4.2.2 Diffusion-based Neighbor Generation. After obtaining prior
information to guide the diffusion process, we adopt a conditional
DDPM [44] to train a denoising network, which progressively re-
moves noise during inference to generate conditionally guided
latent neighbors. Specifically, during training, a forward Markov
chain is constructed to gradually add Gaussian noise to the original
data sample, denoted as the clean session embedding s𝑖𝑑 = s0

𝐿
, over

𝑇 time steps 𝑡 ∈ {1, . . . ,𝑇 }. This process eventually produces a
noisy vector s𝑇

𝐿
that approximates a standard normal distribution.

Each forward transition is defined as:

𝑞
(
s𝑡𝐿 | s𝑡−1

𝐿

)
=N

(
s𝑡𝐿 ;

√︁
1 − 𝛽𝑡 s𝑡−1

𝐿 , 𝛽𝑡 I
)
, (8)

where 𝛽𝑡 ∈ (0, 1) is the noise schedule at time step 𝑡 , and I is the
identity matrix. Let 𝛼𝑡 = 1 − 𝛽𝑡 and define the cumulative product
as: 𝛼𝑡 =

∏𝑡
𝑖=1 𝛼𝑡 . Then, the noisy sample at step 𝑡 can be directly

derived from the clean embedding as:

s𝑡𝐿 =
√
𝛼𝑡 s0

𝐿 +
√

1 − 𝛼𝑡𝝐, (9)

where 𝝐 ∼ N(0, I) [12, 36]. Following previous studies [24, 45, 53],
we do not explicitly predict the added noise during training. Instead,
we directly generate the latent neighbor representation s0

𝑁
at each

timestep under the guidance of the semantic priorN𝑘 , enabling the
model to generate potential neighbors in a targeted manner:

s0
𝑁 = 𝑓𝜃

(
s𝑡𝐿,N𝑘 , 𝑡

)
, (10)

where 𝑓𝜃 (·) adopts an MLP architecture as in Mao et al. [24] and
Wu et al. [41]. In our model, the reverse generation process is
conceptualized as a conditional Gaussian distribution at each step:

𝑝𝜃
(
s𝑡−1
𝑁 | s𝑡𝑁 ,N𝑘

)
=N

(
s𝑡−1
𝑁 ; 𝜇𝜃

(
s𝑡𝑁 ,N𝑘 , 𝑡

)
, Σ𝜃

(
s𝑡𝑁 ,N𝑘 , 𝑡

) )
, (11)

where 𝜇𝜃 (·) and Σ𝜃 (·) are the learnable mean and covariance pre-
dicted by the network. Accordingly, the diffusion loss L𝑑 is defined
as:

L𝑑 = E𝑡,s0
𝐿
,𝝐

[


s𝑖𝑑 − 𝑓𝜃

(√
𝛼𝑡 s0

𝐿 +
√

1 − 𝛼𝑡𝝐,N𝑘 , 𝑡

)


2
]

(12)

During inference, we employ a deterministic strategy to generate
latent neighbors s0

𝑁
. Specifically, we first apply 𝑇 ′ steps of forward

corruption to the input session embedding s𝑖𝑑 to obtain a noisy
initialization. Then, starting from this point, we perform 𝑇

′ steps
of reverse denoising conditioned on the retrieved neighbor prior
N𝑘 . In the deterministic reverse process, variance is omitted and
the predicted mean is used directly:

s𝑡−1
𝑁 =

√
𝛼𝑡−1𝛽𝑡

1 − 𝛼𝑡
𝑓𝜃

(
s𝑡𝑁 ,N𝑘 , 𝑡

)
+
√
𝛼𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
s𝑡𝑁 , (13)

where the model 𝑓𝜃 (·) is encouraged to learn session-specific de-
noising strategies for each input. The final output s0

𝑁
is then used

as the generated latent neighbor representation.

4.2.3 Feedback-driven Retriever Optimization. Our method is de-
signed to enable the retriever to continually learn from the feedback
of the generator, so as to retrieve neighbor sessions that are more
beneficial for the neighbor generation task. To achieve this, we
evaluate the effectiveness of each retrieved neighbor in guiding the
diffusion process. Specifically, given the target session’s ID-based
representation s𝑖𝑑 and a set of retrieved neighborsN𝑘 , we compute
the generator’s loss L𝑑 through the diffusion process defined in
section 4.2.2. A smaller value ofL𝑑 indicates that the corresponding
neighbor contributes more effectively to the generation of latent
neighbors. Inspired by Lu and Liu [21], we introduce a relative
ranking-based supervision mechanism: for two retrieved neighbors
s𝐷𝑖 , s

𝐷
𝑗 ∈ N𝑘 , if the diffusion loss under s𝐷𝑖 as the condition is lower

than that under s𝐷𝑗 (i.e.,L𝑑𝑖 < L𝑑 𝑗 ), then s𝐷𝑖 is considered more use-
ful for generation and should be assigned a higher retrieval score.
To optimize the retriever according to the generator’s preferences,
we propose a training strategy that incorporates this supervision
signal. Considering the large size of the candidate pool in practice,
we improve efficiency by applying supervision only to the top-𝑘
retrieved neighbors. The corresponding loss function L𝑟 is defined
as:

L𝑟 =
∑︁

𝜔 𝑗 ∈ top-𝑘
L𝑑 𝑗 · 𝜔 𝑗 , (14)

where 𝜔 𝑗 denotes the softmax-normalized relevance score of neigh-
bor s𝐷𝑗 computed by the retriever, and L𝑑 𝑗 is the diffusion loss
incurred when using s𝐷𝑗 as the generation condition.

4.3 Self-augmented Diffusion Module
To effectively incorporate modality-specific information into the
diffusion process without interfering with the retrieval-augmented
diffusion, we design a self-augmented diffusion module. This mod-
ule conducts contrastive learning between the retrieval-augmented
and self-augmented diffusion paths, thereby enhancing semantic
alignment across modalities.

Specifically, we apply the forward diffusion process to the ID rep-
resentation s𝑖𝑑 by adding Gaussian noise, yielding noisy represen-
tations s𝑡

𝐿
at timestep 𝑡 . During the reverse diffusion process, unlike

the retrieval-augmented diffusion module, which performs denois-
ing under the guidance of retrieved neighbors, the self-augmented
diffusion module leverages the multi-modal representations of the
current input itself to guide the denoising. The denoising is car-
ried out by the network 𝑓𝜓 (·), yielding the denoised embedding
s𝑡
𝑀

= 𝑓𝜓
(
s𝑡
𝐿
, s𝑚𝑜 , 𝑡

)
. Similar to the retrieval-augmented diffusion

module, we compute the diffusion loss L𝑠 for the self-augmented
module as follows:

L𝑠 = E𝑡,s0
𝐿
,𝝐

[


s𝑖𝑑 − 𝑓𝜓

(√
𝛼𝑡 s0

𝐿 +
√

1 − 𝛼𝑡𝝐, s𝑚𝑜 , 𝑡

)


2
]
. (15)

Subsequently, to indirectly inject modality-guided signals into
the diffusion process, we adopt a contrastive learning strategy to
enhance semantic alignment across modalities. Given the denoised
embeddings s𝑡

𝑁
and s𝑡

𝑀
at timestep 𝑡 , the contrastive loss is defined
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as L𝑚 :

L𝑚 = − 1
𝐵

𝐵∑︁
𝑖=1

log
exp

(
sim

(
s𝑡
𝑁 ,𝑖

, s𝑡
𝑀,𝑖

)
/𝜏
)

∑𝐵
𝑗=1 exp

(
sim

(
s𝑡
𝑁 ,𝑖

, s𝑡
𝑀,𝑗

)
𝜏

) , (16)

where 𝐵 is the batch size and 𝜏 is a temperature coefficient, and
sim(·, ·) calculates cosine similarity.

4.4 Prediction and Model Optimization
The final session representation is defined as a weighted combi-
nation of the original ID-based representation and the generated
neighbor representation:

s𝑓 = 𝜌s𝑖𝑑 + (1 − 𝜌)s0
𝑁 , (17)

where 𝜌 ∈ [0, 1] is a learnable parameter that balances the contri-
bution of the two components. For each candidate item x

𝑣𝑖𝑑
𝑖
, the

predicted click probability 𝑦𝑖 is computed as:

𝑦𝑖 = s⊤
𝑓
· x

𝑣𝑖𝑑
𝑖
. (18)

The training objective for recommendation is defined as a stan-
dard cross-entropy loss L𝑒 , formulated as:

L𝑒 (𝑦,𝑦) = −
𝑚∑︁
𝑖=1

[𝑦𝑖 log (𝑦𝑖 ) + (1 − 𝑦𝑖 ) log (1 − 𝑦𝑖 )] , (19)

where 𝑦 denotes the one-hot encoding vector of the ground-truth
item, and 𝑦𝑖 is the predicted probability for the 𝑖-th item.

The overall training objective L is defined as a weighted combi-
nation of the L𝑒 , L𝑟 , L𝑠 and L𝑚 :

L = L𝑒 + 𝛾 (L𝑟 + L𝑠 ) + 𝛿L𝑚, (20)

where 𝛾 and 𝛿 are hyperparameters that control the weights of the
diffusion loss and the contrastive loss, respectively.

5 Experiment
To demonstrate the effectiveness of DiffSBR, we conduct extensive
experiments guided by the following research questions:
• RQ1: How does DiffSBR perform compared to existing methods
for SBR?

• RQ2: Does each proposed component contribute positively to
the performance of DiffSBR?

• RQ3: Are the generated latent neighbors more valid than the
retrieved observable neighbors from known data?

• RQ4: How do different hyperparameter settings influence the
performance of DiffSBR?

5.1 Experimental Setup
5.1.1 Datasets and Evaluation Metrics. We evaluate our model on
four widely used public datasets: Cellphones, Sports, Grocery,
and Instacart, following [51]. The first three datasets are from
different Amazon1 categories and have been widely adopted in
SBR. Similar to the preprocessing protocols in Zhang et al. [51, 52],
sessions are constructed by grouping all user interactions that occur
within a single day. The Instacart dataset is a competition dataset
released on Kaggle2. To simulate SBR scenarios, following Zhang
1http://jmcauley.ucsd.edu/data/amazon/
2https://www.kaggle.com/c/instacart-market-basket-analysis

Table 1: Statistics of datasets.

Datasets Cellphones Sports Grocery Instacart

#item 9,091 14,650 7,286 10,009
#interaction 123,186 282,102 151,251 380,230
#session 40,344 90,492 43,648 88,022
avg. length 3.05 3.12 3.47 4.32

et al. [51], 20% of transactions with the shortest length are selected.
Regarding modality, Amazon datasets provide both textual and
visual information for each item, while for Instacart, only textual
data is used. Specifically, the text modality includes item titles and
brand names. Following Li et al. [17], Wu et al. [40], sessions of
length 1 and items appearing fewer than five times are removed.
The statistical details of all datasets are presented in Table 1. For
evaluation metrics, we follow prior studies [16, 17, 51] to adopt
two commonly used evaluation metrics: P@K (Precision at K) and
MRR@K (Mean Reciprocal Rank at K), where K ∈ {10, 20}, to
evaluate the performance.

5.1.2 Baselines. To demonstrate the effectiveness of DiffSBR, we
compare it against a broad range of representative baselines, includ-
ing traditional and state-of-the-art SBR models, and diffusion-based
sequential recommendation approaches: (1) SKNN [13] predicts
the next item based on retrieving session neighbors with high sim-
ilarity from historical sessions. (2) NARM [17] uses a GRU with
attention to model user intent. (3) SR-GNN [40] captures complex
item transition relationships using GNN. (4) MSGIFSR [9] em-
ploys GNN to capture user preferences from continuous segments
through co-occurrence patterns. (5) Atten-Mixer [48] leverages
multi-level user intent to perform multi-stage reasoning on item
co-occurrence transitions. (6)MSGAT [29] enhances the current
session by retrieving neighbor based on cosine similarity and co-
occurrence relationships. (7) MGS [16] leverages item attributes to
retrieve similar neighbors and further estimate user preferences.
(8) MMSBR [50] is the first method in SBR to combine text and
images for modeling user intent. (9) DIMO [51] uncovers the rela-
tionships between co-occurring items and modalities to disentangle
the effects of ID and modality. (10) DiffuRec [18] adopts diffusion
models to handle sequential recommendation, replacing conven-
tional static item embeddings with probabilistic representations.
(11) DiQDiff [24] uses quantized user sequences as conditions to
guide diffusion generation in sequential recommendation.

5.1.3 Implementation Details. Following prior studies [50, 51], we
adopt the Adam optimizer with an initial learning rate of 0.001 and
set the mini-batch size to 50. To ensure fair comparison, the embed-
ding dimension for all methods is set to 100. Following Zhang et al.
[51], we apply PCA to reduce both modalities to 100 dimensions.
We perform grid search to select the optimal hyperparameters of
the model. The number of GCN layers is set to 3, and the tempera-
ture coefficient is set to 0.3. For DDPM, we follow Mao et al. [24] by
using 32 diffusion timesteps and adopting a truncated linear noise
schedule.

5.2 Overall Performance (RQ1)
Table 2 reports the evaluation results of performance comparison.
The results lead to several key observations:
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Table 2: Comparison of different models across datasets and metrics. The best baseline results are underlined. * indicates
statistically significant improvement over all baselines (𝑝-value < 0.05).

Model
Cellphones Sports Grocery Instacart

P@10 MRR@10 P@20 MRR@20 P@10 MRR@10 P@20 MRR@20 P@10 MRR@10 P@20 MRR@20 P@10 MRR@10 P@20 MRR@20

SKNN 14.31 8.84 16.48 9.06 31.79 24.23 33.98 24.39 40.40 27.64 42.40 27.78 6.78 2.06 11.79 2.41
NARM 15.42 12.43 16.80 12.53 35.55 33.40 36.67 33.57 45.67 40.39 47.14 40.59 8.27 3.02 12.19 3.25
SR-GNN 16.36 12.96 18.11 13.09 36.31 33.36 37.69 33.66 44.33 39.44 46.24 39.64 8.96 3.27 13.00 3.64
MSGIFSR 17.80 12.40 21.16 12.64 36.27 30.36 39.65 30.59 45.45 38.16 48.15 38.35 11.56 3.74 16.44 4.02

Atten-Mixer 19.51 14.54 22.28 14.71 37.30 33.63 39.19 33.86 47.65 40.71 49.56 40.84 8.11 3.12 11.53 3.36
MSGAT 17.22 13.41 20.01 13.67 37.19 33.69 38.53 33.91 45.20 39.98 47.01 40.12 9.29 3.54 13.36 3.77
MGS 21.54 14.24 25.02 14.48 36.79 32.39 38.45 32.50 46.59 38.83 48.37 38.98 8.95 2.87 13.74 3.09

MMSBR 20.59 13.94 22.82 14.13 36.69 32.52 38.29 32.73 46.05 39.01 47.89 39.23 9.89 3.61 14.37 3.84
DIMO 31.66 16.98 38.81 17.36 45.07 34.86 49.86 35.15 53.03 41.81 57.01 41.98 12.51 4.31 18.36 4.81

DiffuRec 25.78 15.54 30.68 15.88 41.25 33.86 47.31 34.15 50.78 38.22 54.39 38.47 9.36 3.58 13.81 3.88
DiQDiff 28.12 16.41 33.19 16.83 43.01 34.51 49.28 34.96 52.29 39.04 56.03 39.32 10.62 3.96 15.34 4.17

DiffSBR 37.28* 18.03* 45.97* 18.60* 49.94* 35.66* 55.83* 36.07* 57.05* 42.64* 62.33* 42.84* 13.83* 5.12* 20.34* 5.57*
Improvement ↑ 17.75% 6.18% 18.45% 7.14% 10.81% 2.29% 11.97% 2.62% 7.58% 1.99% 9.33% 2.05% 10.55% 18.79% 10.78% 15.80%

(1) Early methods such as SKNN rely solely on session similarity
for neighbor retrieval, but lack the capacity to capture complex item
transitions within sessions, resulting in limited recommendation
accuracy. Later models like NARM and SR-GNN introduce attention
and GNN mechanisms to enhance session modeling, thus improv-
ing performance. Recent methods such as MSGIFSR, Atten-Mixer,
MSGAT, and MGS attempt to combine neighbor retrieval with
graph-based modeling. By integrating historically similar sessions
as auxiliary information, these models aim to enrich the session
representation, and thereby improve recommendation performance.
Nevertheless, they may rely only on observed neighbors and strug-
gle to capture unobserved but semantically relevant sessions. In
contrast, DiffSBR introduces a retrieval-augmented diffusion mod-
ule that treats retrieved neighbors as semantic priors to guide the
generation of latent neighbors, leading to a higher performance.

(2) We observed that MMSBR and DIMO achieved good per-
formance, indicating that the multi-modal information introduced
played a positive role in improving the session modeling effect.
Diffusion-based models such as DiffuRec and DiQDiff also showed
promising results, demonstrating the advantages of diffusion in re-
constructing complex distributions and enabling condition-controlled
generation. In comparison, the proposed DiffSBR further improves
the recommendation performance. DiffSBR generates latent neigh-
bors by continuously injecting both prior knowledge and multi-
modal signals into the diffusion-based generation process, thereby
exploring the full interest space beyond the observed data.

(3) DiffSBR consistently outperforms all baselines across multi-
ple datasets, demonstrating its effectiveness. This performance gain
can be attributed to the crucial role of latent neighbors, as well as
the effectiveness of the Retrieval-augmented and Self-augmented
Diffusion modules. By leveraging retrieved real neighbors as prior
knowledge to guide the generation process and injecting multi-
modal signals, DiffSBR is able to generate high-quality latent neigh-
bors beyond the scope of observed data, which strengthens session
representations and thereby improving recommendation accuracy.

Figure 3: Effect of retrieval-augmented diffusion module.

5.3 Ablation Studies (RQ2)
To assess the impact of each major component in our method, we
perform ablation studies by selectively removing or altering core
modules.

5.3.1 Effect of Retrieval-augmented Diffusion Module. To verify
the effect of the Retrieval-augmented Diffusion Module, we com-
pare with variants: w/o RAD: This variant removes the retrieval-
augmented diffusion module, meaning that no retrieved prior in-
formation is used to guide the diffusion process, nor is the retriever
optimized via feedback, and no multi-modal information is incorpo-
rated. w/o FDRQ: In this variant, within the retrieval-augmented
diffusion module, only the feedback-driven retriever optimization
is removed. The performance variations across four benchmark
datasets are illustrated in Figure 3.

The w/o RAD variant leads to a significant performance drop, in-
dicating the importance of prior knowledge in guiding the diffusion
process to generate semantically aligned neighbor representations.
Without informative guidance, the diffusion process is more likely
to deviate in latent space, resulting in degraded recommendation
quality. Moreover, the w/o FDRQ variant weakens the collaboration
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Table 3: Effect of self-augmented diffusion module.

Method
Cellphones Sports Grocery Instacart

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

w/o SAD 43.19 17.76 53.90 35.43 60.70 41.73 18.55 4.97
-EF 40.20 17.15 50.41 34.58 58.83 39.18 15.85 4.54
-LF 43.56 17.95 52.69 34.77 61.07 41.51 19.15 4.77
-CF 39.98 17.32 51.09 35.08 59.08 40.53 17.56 4.79
-AF 44.19 17.68 53.82 34.83 61.40 40.84 19.89 5.30

DiffSBR 45.97* 18.60* 55.83* 36.07* 62.33* 42.84* 20.34* 5.57*

between the retriever and the generator. Without dynamic supervi-
sion from the generator, the retriever cannot adaptively refine its
scoring function to better support the generation process, thereby
limiting the quality of retrieved guidance signals and lowering the
performance.

5.3.2 Effect of Self-augmented Diffusion Module. We design these
variants: w/o SAD: This variant removes the self-augmented diffu-
sion module, meaning that multi-modal information is not utilized
in the whole framework and only the ID modality is used. -EF: This
variant removes the self-augmentation diffusion module and adopts
an early-fusion strategy, where the modality embeddings are di-
rectly integrated into the input of the retrieval-augmented diffusion
module. -LF: This variant removes the self-augmentation diffusion
module and performs late fusion by incorporating modality embed-
dings at the prediction stage. -CF: This variant removes the self-
augmentation diffusion module and performs conditional fusion
by directly merging the modality embeddings into the retrieval-
augmented diffusion module’s condition, which is then used to
guide the diffusion denoising process. -AF: This variant keeps the
self-augmentation diffusion module but replaces the contrastive
learning with a cross-modal attention mechanism to integrate
modality information.

As shown in Table 3, for the variant w/o SAD, the performance
drops significantly when this variant is removed, indicating that
adding multi-modal information to the diffusion process is helpful
in improving the quality of latent neighbors. We further evaluate
four simplified alternatives (EF, LF, CF, and AF), each integrating
multi-modal information through a different fusion strategy. Al-
though these variants incorporate multi-modal information to some
extent, they all exhibit clear performance degradation compared to
the full model, largely because their fusion mechanisms are either
too coarse or insufficiently aligned with the diffusion denoising
process. As a result, they fail to provide effective multi-modal sig-
nals, leading to weaker latent neighbor quality and reduced model
performance. This result highlights that simple fusion strategies
are insufficient for effectively leveraging multi-modal signals.

5.4 Effectiveness of the Generated Latent
Neighbors (RQ3)

To comprehensively assess the necessity and effectiveness of latent
neighbor generation, we conduct both quantitative and qualita-
tive analyses. Specifically, we compare two variants: Observable-
Neighbors, which retrieves neighbors directly from observed data
based on similarity (reflecting traditional retrieval-based methods).
Latent-Neighbors, which generates latent neighbors through our
proposed DiffSBR approach.

Figure 4: Comparison results of the Latent-Neighbors vs.
Observable-Neighbors.

(b) Grocery(a) Cellphones

Figure 5: Qualitative visualization of the Latent-Neighbors
and Observable-Neighbors.

Quantitative Evaluation. To assess the effectiveness of latent
neighbor generation, we conduct systematic comparisons between
two variants: Latent-Neighbors and Observable-Neighbors across
three benchmark datasets. As shown in Figure 43, Latent-Neighbors
consistently outperforms Observable-Neighbors in both P@20 and
MRR@20 across three datasets. These improvements highlight the
advantage of our diffusion-based generation approach, which en-
ables the synthesis of semantically relevant neighbors beyond the
observed interaction data. By bridging the gaps left by static re-
trieval methods, latent neighbors not only enhance overall recom-
mendation performance, but also offer data-driven evidence for the
feasibility of generative neighbors modeling.

Qualitative Visualization. To intuitively understand why la-
tent neighbors outperform static retrieval ones, we perform a visu-
alization analysis to compare their spatial distribution. Specifically,
we project the high-dimensional representations of the target ses-
sions and their corresponding neighbors into a 2D space using
t-SNE[32, 33]. We use blue dots to represent different sessions.
The red squares in the figure represent the Observable-Neighbors,
which are the three neighbors with the highest similarity retrieved
from the known dataset. The green triangles in the figure represent
the Latent-Neighbors generated using the proposed method.

As illustrated in Figure 53, overall, latent neighbors (denoted
by green triangles) exhibit a more concentrated distribution in the
embedding space, closely adjacent to the target session node. In
contrast, observable neighbors (depicted by red squares) display
a comparatively scattered distribution, with some positioned far-
ther from the target session. This phenomenon suggests that while
conventional retrieval methods can identify relatively similar neigh-
bors from observed data, the retrieved neighbors are often confined

3 It is worth noting that we have conducted experiments on four datasets. The observed
patterns are consistent with those shown in the Figure. For the sake of visual clarity and
presentation aesthetics, we display only a subset of the results, which are representative
rather than accidental.
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to the scope of recorded behaviors. Conversely, latent neighbors
effectively fill the sparse regions of the embedding space, thereby
uncovering neighbors that are semantically closer to the target
session. These qualitative results substantiate the necessity and
effectiveness of our latent neighbor generation approach.

5.5 Sensitivity Analysis (RQ4)
5.5.1 Impact of the Number of Retrieved Neighbors 𝑘 . The number
of retrieved neighbors 𝑘 , acting as prior knowledge to guide the
generation of latent neighbors, serves as a key hyperparameter.
To investigate its effect, we vary 𝑘 in {1, 2, 3, 4, 5} and evaluate the
model performance across datasets. As shown in Figure 6, increas-
ing𝑘 initially improves performance, asmore informative neighbors
provide richer semantic prior signals to the generator. However,
performance peaks at 𝑘 = 2 for the Sports dataset, at 𝑘 = 3 for both
Cellphones and Grocery, beyond which further increasing 𝑘 leads
to slight declines. This trend suggests that introducing too many
neighbors may inject noise or redundant information, ultimately
weakening the effectiveness of guidance.

5.5.2 Impact of Loss Weights 𝛾 and 𝛿 . We further investigate the
impact of the two loss weights: the diffusion model loss weight
𝛾 and contrastive loss weight 𝛿 . As shown in Figure 7, for the
diffusion loss weight 𝛾 , we analyze the results from 𝛾 = 6, as
preliminary experiments indicated that smaller values (e.g., 𝛾 < 6)
led to suboptimal performance due to insufficient influence of the
diffusion loss on the generation process. Specifically, the Sports
and Grocery datasets reach their peak performance at 𝛾 = 7, while
the Cellphones and Instacart datasets perform best at 𝛾 = 8. This
suggests that an appropriate weighting of the diffusion model loss
allows the model to effectively generate latent neighbors. However,
setting 𝛾 too high (e.g., 𝛾 = 9 or 10) results in a slight decline in
performance, likely because the diffusion loss term dominates the
overall objective and diminishes the contribution of other important
components.

For the contrastive loss weight 𝛿 , performance improves with a
moderate contrastive signal. Specifically, the Grocery and Instacart
datasets achieve their best performance at 𝛿 = 0.05, while the
Cellphones and Sports datasets reach their peak at 𝛿 = 0.1. This
confirms the effectiveness of injecting multi-modal information dur-
ing the diffusion process. However, excessively large 𝛿 values may
interfere with the optimization of other loss components, leading
to slightly reduced performance.

6 Conclusion
In this study, we propose a novel Diffusion-based Latent Neigh-
bor Generation model for improving SBR. Specifically, we design
a retrieval-augmented diffusion module that leverages retrieved
neighbors as prior knowledge to guide the diffusion process in gen-
erating latent neighbors. Within this module, we further introduce
a new training strategy to enhance the synergy between retrieval
and diffusion during neighbor generation. In addition, we develop
a self-augmented diffusion module to fully exploit multi-modal
information throughout the diffusion process, thereby improving
the quality of generated neighbors. Experimental results on four
benchmark datasets demonstrate that DiffSBR consistently achieves
significant performance gains over state-of-the-art methods.

In this work, we highlight the potential of latent neighbor gen-
eration for SBR. However, this remains a preliminary study on
modeling latent neighbors, and there is still room for improvement.
In future work, we plan to investigate the distinct strengths and
complementarities of various generative models (e.g., autoregres-
sive models) and explore hybrid frameworks that integrate multiple
generative paradigms, aiming to further enhance the quality of
generated latent neighbors.
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